Laser-Lok Technology

Laser-Lok overview
Laser-Lok microchannels is a proprietary dental implant surface treatment developed over 20 years of research initiated to create the optimal implant surface. Through this research, the unique Laser-Lok surface has been shown to elicit a biologic response that includes inhibiting epithelial downgrowth and recession of connective tissue (unlike Sharpey fibers).2 This physical attachment produces a biologic seal around the implant that protects and maintains crestal bone health. The Laser-Lok phenomenon has been shown in post-market studies to be more effective than other implant designs in reducing bone loss.4,5,6,7

Unique surface characteristics
Laser-Lok microchannels is a series of cell-sized circumferential channels that are precisely created using laser ablation technology. This technology produces extremely consistent microchannels that are optimally sized to attach and organize both osteoblasts and fibroblasts.8,9 The Laser-Lok microstructure also includes a repeating nanostructure that maximizes surface area and enables cell pseudopodia and collagen microfibrils to interdigitate with the Laser-Lok surface.

Different than other surface treatments
Virtually all dental implant surfaces on the market are grit-blasted and/or acid-etched. These manufacturing methods create random surfaces that vary from point to point on the implant and after cell reaction depending on where each cell comes in contact with the surface.10 While random surfaces have shown higher osseointegration than machined surfaces,11 only the Laser-Lok surface has been shown using light microscopy, polarized light microscopy and scanning electron microscopy to be also effective for soft tissue attachment.2,12

The clinical advantage
The Laser-Lok surface has been shown in several studies to elicit a clinical advantage over other implant designs. In a prospective, controlled multi-center study, Laser-Lok implants placed alongside identical implants with a traditional surface, were shown at 37 months post-op to reduce bone loss by 70% (n = 1,567).4 In a retrospective, private practice study, Laser-Lok implants placed in a variety of sites and conditions and followed up to 5 years minimized bone loss to 8 mm.5 In a prospective, University-based overdenture study, Laser-Lok implants reduced bone loss by 63% versus No-bellipse® Select.6

Contact Information
BioHorizons
Greg Bryant
205–986-7894 (USA)
Director, Communication & Education

Captions
1. Implant success rate is the weighted average of all published human studies on BioHorizons implants.
2. These studies are available for review in this document and BioHorizons document number ML0130.

References